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The following result is proved: Given all but a finite number of partial-wave amplitudes in a two-body 
scattering process, the remaining amplitudes are uniquely determined if either (a) the scattering amplitude 
has crossing symmetry or (b) there is an energy region in one of the crossed channels where the scattering 
is purely elastic. In case (a) the proof does not require a knowledge of the precise analytic structure of the 
scattering amplitude, while in case (b) the amplitude is assumed to satisfy the Mandelstam representation. 

IMPORTANT insight into the structure of strong in
teractions of elementary particles has been achieved 

recently by the study of the ambiguities associated with 
the solutions of the Mandelstam representation. In this 
field, which was initiated by Froissart,1 it is customary 
to assume1,2 that the double-spectral functions associ
ated with the process are given for some suitable values 
of the energy variables. Here we will consider a related 
problem where it will instead be assumed that all but 
a finite number N of partial waves associated with a two-
body scattering amplitude are given, and the ambi
guities associated with the remaining N partial waves 
will be examined. I t will be proved that the remaining N 
partial waves are, in fact, uniquely determined except 
possibly for an additive s-wave constant if either (a) the 
scattering amplitude has crossing symmetry, or (b) in 
one of the crossed channels there exists an energy region 
where the scattering is purely elastic.3 In case (a), a 
knowledge of the precise nature of the analyticity of the 
scattering amplitude is not required. I t need only be 
assumed that the analytic continuation of the same 
amplitude determines the two processes we are in
terested in. 

For simplicity, we will consider the scattering of two 
spinless particles of equal mass m. Let s denote the 
square of the center-of-mass energy in one of the three 
Mandelstam channels, and let 6 be the corresponding 
scattering angle. The invariant momentum transfer t is 
defined through the usual relation 

* = - 2 & 2 ( l - c o s 0 ) , (la) 

c o s 0 = l + 2 / / ( > - 4 w 2 ) , (lb) 

where k denotes the center-of-mass momentum in this 
channel. The partial-wave amplitude Fi(s) is defined as 

Hs) = 
Ls—4m2 J 2i 

(2) 

in a familiar notation. 
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To proceed further, let us assume that all the TVs for 
I greater than some integer N are given. The proof goes 
through with trivial alterations when all but any finite 
number of the Fi's are given. The ambiguity we wish to 
resolve is associated with the possibility that for I ̂  N, 
there may exist at least two amplitudes, say Fia)(s) 
and 2*y2)(V), which may describe the scattering for 
these Z's. If this were possible, we may construct two 
scattering amplitudes Fa)(s,t) and F(2)(s,t) when s^ 4m2 

and + 1 ^ cos0 ̂  — 1 through the definitions 

i?(1)M=E(2/+D^(1)(Wl-
4m2 / 

/ 2t \ 

+ E (2l+l)Fl(s)(?i(l+ V 
i^N+i \ s—4m2/ 

F™ (s,t) = E (21+ DFiW ( W l + ) 
z=o \ s—^m2/ 

(3) 

+ E (2j+DF,(Wi+—y 

Equation (3) shows that F<M(s,t)-FW(s,f) is a poly
nomial in t of degree N: 

F^(s,t)-F^(s,t)=j: bn{s)t\ (4) 

where the bn's are linear combinations of Ft
a)(s) 

—Fi(2)(s) with coefficients which remain bounded as s 
tends to infinity. 

Let us now examine case (a). Crossing symmetry im
plies that F<M(s,t) = F<M(t,s), FW(s,t) = FW(t,s), where 
we have assumed without loss of generality that the 
t channel is the one that is crossing symmetric to the 
s channel. Equation (4), therefore, gives 

N N 

7i=0 n=0 

or bn(s) is a polynomial of degree N in s: 

bn(s)=lL an,rSr. 
r=0 

(5) 

(6) 
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But the partial waves are bounded at infinity, and 
hence the bn's must be constants for all n. (5) then 
shows that only bo(s) can be a nonzero constant. Thus, 
Fa)(s,t) and F(2)(s}t) can differ at most by a constant 
which is what we set out to prove. If we assume at this 
point that the ^o's go to zero as 5 tends to infinity, which 
seems a physically plausible assumption (dominance of 
inelastic processes at high energies), we see that this 
constant also must be zero. 

To discuss case (b), we note that (4) implies that 
Fa) (Sjfy—F®) (s,t) is regular for every finite / and fixed s. 
The absorptive part of F^(s,t)-F^(s,t) in the * 
channel is, therefore, zero. If cpia)(t) and <pj(2)(0 denote 
the partial-wave amplitudes in the / channel, it follows 
that 

Tm<pito(t) = Im<piM(t) (7) 

for all I and t^4m2. By hypothesis, there is an interval 
4m2^t<h in the t channel where elastic unitarity is 
applicable. In this interval, as a consequence of (7), 
one finds 

Re^tt)(*) = ±Re^<2) (0 . (8) 

Let M denote the number of subtractions in the Mandel-
stam representation. The case Re<pj(1)(£) = — Re<pz(2)(/) 
may then be eliminated for 1>M by appealing to an 
elegant argument due to Martin.2 Thus, 

Via)(t)=<Pim(t) (9) 

for 1>M and 4m2^t<h and by analytic continuation, 
for all t. Fa)(s,t)—F(2)(s,t) now reduces to a polynomial 
of degree M in s and the rest of the argument proceeds 
as before. 

Let h be the threshold for the second inelastic process 
in the t channel, and let the first inelastic channel be 
a two-body process too. A simple application of partial-
wave unitarity then reveals that the partial waves in 
this new channel are also uniquely determined up to a 
phase for t\<t<h. However, it seems difficult to carry 
this argument further since the phase may become com
plex for V>h or t<t\. 

We may comment in conclusion on the relevance of 
the preceding remarks to the hypothesis that all parti
cles are Regge poles.4 The partial-wave amplitudes 
satisfy standard dispersion relations which, however, 
have a multiplicity of solutions.5 I t has been shown that 
for a class of processes, if these amplitudes are given for 
l>Ny there is one preferred solution for l^N. This is 
equivalent to the statement that if we are given the 
interpolating partial-wave amplitude F(s,l) of complex 
angular momentum theory,6 (ignoring signature dis
tinctions), which is a priori defined only for Rel greater 
than some integer M, the physical amplitudes for Z^ M 
are, in fact, uniquely determined. The crucial point, 
then, is whether or not the analytic continuation of 
F(s,l) for Rel^M coincides with the preferred solutions 
of the partial-wave dispersion relations.7 I t is important 
to observe in this connection that if we define an 
amplitude 

^ ' M = E (2Z+l)F(*,Z)Pi(cos0), (10) 
z=o 

there is apparently no reason to believe that F'(s,t) will 
satisfy either crossing symmetry or unitarity in one of 
the crossed channels.8 Otherwise, it would be a simple 
matter to prove that all particles are Regge poles. 
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